COMBINATORICA

Akadémiai Kiadó - Springer-Verlag

EXISTENCE OF VERTICES OF LOCAL CONNECTIVITY k IN DIGRAPHS OF LARGE OUTDEGREE

W. MADER.

Received April 10, 1994 Revised January 24, 1995

For every positive integer k, there is a positive integer f(k) such that every finite digraph of minimum outdegree f(k) contains vertices x, y joined by k openly disjoint paths.

It was proved in [5] that every finite (undirected) graph (without multiple edges) of minimum degree k contains adjacent vertices joined by k openly disjoint paths (cf. also [6], [7], [1]). It was shown in [8] that every finite digraph (without multiple edges) of minimum outdegree k contains vertices x, y connected by k-1 edge-disjoint (directed) paths from x to y, and perhaps there are even k such paths. Such a result is not true for openly disjoint paths in digraphs: for every positive integer m, a finite digraph of minimum outdegree 12m is constructed in [8] so that all vertices x, y are connected by at most 11m openly disjoint paths from x to y. A similar negative result holds, if we require in addition that also the indegree is large [8]. It remained an open problem in [8], if for every positive integer k there is a (least) integer k such that every finite digraph of minimum outdegree k contains vertices k, k connected by k openly disjoint paths from k to k. We prove the existence of such a function k here and show k for $k \le 3$.

First some definitions and notation. A digraph D=(V,E) has no multiple edges of the same direction. Its vertex set is denoted by V(D), its edge set by $E(D)\subseteq \{(x,y):x\neq y \text{ from }V(D)\}$; furthermore, |D|:=|V(D)| and ||D||:=|E(D)|. The edge (x,y) goes from x to y. For $X\subseteq V(D)$, D(X) means the subdigraph of D spanned by X and D-X:=D(V(D)-X); we write $D-x:=D-\{x\}$ for $x\in D$, where $x\in D$ is equivalent to $x\in V(D)$. For $x\neq y$ from V(D), $D\cup (x,y):=(V(D),E(D)\cup \{(x,y)\})$; note $D\cup (x,y)=D$, if there is an edge from x to y in D. For $X\subseteq V(D)$, $E_D^-(X):=\{(y,x)\in E(D):y\notin X \text{ and }x\in X\}$, $N_D^-(X):=\{y\in V(D):\text{ there is an }(y,x)\in E_D^-(X)\}$ and $d_D^-(X):=|N_D^-(X)|$. We write x instead of $\{x\}$ in this notation and delete the subscript D, if the considered

Mathematics Subject Classification (1991): 05 C 20, 05 C 40

534 W. MADER

D is obvious from the context. The notation $E^+(X)$, $N^+(X)$ and $d^+(X)$ is defined correspondingly; for instance, $d_D^+(x)$ denotes the outdegree of $x \in D$. We call a digraph D outregular of degree n, if $d_D^+(x) = n$ for all $x \in D$.

A path and a circuit in a digraph are always continuously directed and pass through every vertex at most once. An x,y-path is a path which starts from the vertex x and ends in the vertex y and an X,y-path for $X \subseteq V(D)$ has only the initial vertex and no other vertex in common with X. We call a digraph D connected, if there is a (directed!) x,y-path in D for all $x,y \in D$. The maximum number of pairwise openly disjoint x,y-paths in D is denoted by $\kappa(x,y;D)$ for $x \neq y$, and we define $\kappa(x,x;D) := 0$. Furthermore, we set $\overline{\kappa}(D) := \max_{x,y \in D} \kappa(x,y;D)$ for a finite

digraph D. A vertex set $T \subseteq V(D)$ separates $C \subseteq V(D)$ to $x \in D$, if $T \cap (C \cup \{x\}) = \emptyset$ and there is no C, x-path in D - T.

If $\mathcal S$ is a set of subsets of a set, we write $\bigcup \mathcal S$ for $\bigcup_{S \in \mathcal S} S$. For a positive integer

$$m, \mathbb{N}_m := \{1, \dots, m\} \text{ and } \overrightarrow{K}_m := (\mathbb{N}_m, \{(i,j) : i \neq j \text{ from } \mathbb{N}_m\}).$$

For non-negative integers p, n, \mathcal{D}_n^p denotes the class of all finite digraphs D which satisfy the inequalities $|\{x \in D : d_D^-(x) \le n\}| \le p < |D|$. Every $D \in \mathcal{D}_n^p$ has a vertex x with $d^-(x) > n$, hence $|D| \ge n + 2$, since D is a digraph.

Theorem. For every non-negative integer k, every $D \in \mathcal{D}_{k^3(k+1)}^{k^2(k+1)}$ contains vertices x, y with $\kappa(x, y, D) > k$.

Proof. We assume that there is a positive integer k, for which this is not true. Be $p:=k^2(k+1)$ and $n:=k^3(k+1)=kp$. Choose a $D\in\mathcal{D}_n^p$ which has $\kappa(x,y;D)\leq k$ for all $x,y\in D$, such that $|D|+\|D\|$ is as small as possible. Set $P:=\{x\in D: d_D^-(x)\leq n\}$. By minimality of D, we have $d_D^-(x)=0$ for all $x\in P$, $d_D^-(x)=n+1$ for all $x\in D-P$ and |P|=p. Choose $x_0\in V(D)-P\neq\emptyset$ and denote the elements of $E_D^-(x_0)$ by (x_i,x_0) for $i\in\mathbb{N}_{n+1}$. We subdivide (x_i,x_0) by a new vertex s_i for $i\in\mathbb{N}_{n+1}(s_i\neq s_j)$ and get in this way D_s ; set $S:=\{s_i:i\in\mathbb{N}_{n+1}\}$.

By Menger's theorem (see, for instance, chap. X.1 in [10]), for every $x \in D - x_0$ there is a $T_x \subseteq V(D_s) - \{x, x_0\}$ with $|T_x| \le k$ which separates x to x_0 in D_s . For every $x \in D - x_0$ define $C_x := \{y \in D_s : \text{ there is an } x, y\text{-path in } D_s - T_x\}$. Then $x \in C_x - \bigcup_{y \in D - \{x, x_0\}} C_y$ holds for every $x \in P$, since $d_{D_s}^-(x) = 0$ for $x \in P$. Choose a

minimal covering $\mathscr{C} \subseteq \{C_x : x \in D - x_0\}$ of $V(D - x_0)$ and define $T_C := N_{D_s}^+(C)$ for $C \in \mathscr{C}$ and $T := \bigcup_{C \in \mathscr{C}} T_C$. Then $\underline{C} := C - \bigcup (\mathscr{C} - \{C\}) \neq \emptyset$ for every $C \in \mathscr{C}$, since the

covering \mathscr{C} of $V(D-x_0)$ is minimal. From the above property of C_x for $x \in P$, we deduce

1. $C_x \in \mathcal{C}$ and $C_x \cap P = \{x\} = C_x \cap P$ for every $x \in P$.

Furthermore, we have $\underline{C} \cap \underline{C'} = \emptyset$ for $C \neq C'$ from \mathscr{C} , $T \cap P = \emptyset$ and

$$2. \sum_{C \in \mathcal{C}} |T_C| \le k |\mathcal{C}|.$$

Since \mathscr{C} is a covering of $V(D-x_0)$ and T_C separates C to x_0 in D_s for $C \in \mathscr{C}$, $S \subseteq T$ and $S \cap \bigcup \mathscr{C} = \emptyset$, in particular, $\bigcup \mathscr{C} = V(D-x_0)$ hold. Defining $T'_C := T_C - S$ for $C \in \mathscr{C}$, we get from (2)

3.
$$\sum_{C \in \mathcal{L}} |T_C'| \le k|\mathcal{C}| - n - 1.$$

Set $\mathscr{C}' := \{C \in \mathscr{C} : \underline{C} \cap P = \emptyset\}$ and $\mathscr{C}_P := \mathscr{C} - \mathscr{C}'$. By (1), we have $\mathscr{C}_P = \{C \in \mathscr{C} : C \cap P \neq \emptyset\}$ and

4. $|\mathcal{C}_P| = p$.

Consider $\mathcal{A}:=\{A\in\mathcal{C}':\sum_{C\in\mathcal{C}}|\underline{A}\cap T'_C|< k\}$. For $A\in\mathcal{A}$ let $C_1^A,\ldots,C_{t(A)}^A$ be all $C\in\mathcal{C}$ with $T_C\cap\underline{A}\neq\emptyset$. Then $0\leq t(A)< k$ for every $A\in\mathcal{A}$ by definition of \mathcal{A} . For $A\in\mathcal{A}$, define $\overline{A}:=(A\cup\bigcup_{i=1}^{t(A)}C_i^A)-\bigcup(\mathcal{C}-\{A,C_1^A,\ldots,C_{t(A)}^A\})$. Then $\underline{A}\subseteq\overline{A}$ holds for $A\in\mathcal{A}$. Consider any $(x,y)\in E(D_s)$ with $y\in\overline{A}$, but $x\notin\overline{A}\cup\{x_0\}$. Then $(x,y)\in E(D-x_0)$ and there is a $C\in\mathcal{C}-\{A,C_1^A,\ldots,C_{t(A)}^A\}$ containing x. But $y\notin C$, hence $y\in T'_C$. In particular, this implies $N_{D-x_0}^-(\underline{A})\subseteq\overline{A}$, hence $d_{D(\overline{A})}^-(x)\geq n$ for all $x\in\underline{A}$, since $\underline{A}\cap P=\emptyset$ and there is at most one edge from x_0 to x. Therefore, $|\overline{A}|\geq n+1\geq p+1$, since $\underline{A}\neq\emptyset$. Furthermore, $|\mathcal{C}|\geq \frac{n+1}{k}>k$, since $S\subseteq T$. Hence \overline{A} is a proper subset of $V(D-x_0)$, since $|\{A,C_1^A,\ldots,C_{t(A)}^A\}|\leq k$ and $\underline{C}\neq\emptyset$ for every $C\in\mathcal{C}$. Since D was a minimal counterexample, these statements imply that $D(\overline{A}\cup\{x_0\})$ has more then p vertices of indegree at most n. Since every such vertex of indegree at most n must be in $P\cup T\cup\{x_0\}$ by above, we get

5. $|(P \cup T) \cap \overline{A}| \ge p$ for every $A \in \mathcal{A}$.

Every $C \in \mathcal{C}$ occurs in $\{C_1^A, \dots, C_{t(A)}^A\}$ for at most k $A \in \mathcal{A}$, since $|T_C| \leq k$. Hence every $C \in \mathcal{C}$ occurs in $\{A, C_1^A, \dots, C_{t(A)}^A\}$ for at most k+1 $A \in \mathcal{A}$. Every $a \in \overline{A}$ belongs to certain elements of $\{A, C_1^A, \dots, C_{t(A)}^A\}$, but to no further elements of \mathcal{C} . Therefore, every $a \in U(\mathcal{A}) := \bigcup_{A \in \mathcal{A}} \overline{A}$ belongs for at most k+1 $A \in \mathcal{A}$ to \overline{A} . Hence, (5) implies

6.
$$|P \cap U(\mathcal{A})| + |T \cap U(\mathcal{A})| = |(P \cup T) \cap U(\mathcal{A})| \ge \frac{p|\mathcal{A}|}{k+1} = k^2|\mathcal{A}|$$
.

If $C \cap \overline{A} \neq \emptyset$ for some $C \in \mathcal{C}$ and $A \in \mathcal{A}$, then $\underline{C} \subseteq \overline{A}$ by definition of \overline{A} . Set $\mathcal{C}'' := \{C \in \mathcal{C}' : \underline{C} \subseteq U(\mathcal{A})\}$ and $C'_P := \{C \in \mathcal{C}_P : \underline{C} \subseteq U(\mathcal{A})\}$. By (1), we get

536 W. MADER

 $|P \cap U(\mathcal{A})| = |\mathcal{C}'_P|$. Since every $C \in \mathcal{C}$ with $\underline{C} \subseteq U(\mathcal{A})$ occurs in $\{A, C_1^A, \dots, C_{t(A)}^A\}$ for some $A \in \mathcal{A}$, we see $|\mathcal{C}'' \cup \mathcal{C}'_P| \leq k|\mathcal{A}|$. So (6) implies

7.
$$|T \cap U(\mathcal{A})| \ge k|\mathcal{C}''| + (k-1)|\mathcal{C}'_P| \ge k|\mathcal{C}''|$$
.
Using (3) and (4), we get from (7)

$$\sum_{C\in\mathscr{C}}|T_C'\cap\bigcup_{C'\in\mathscr{C}'-\mathscr{C}''}\underline{C'}|\leq\sum_{C\in\mathscr{C}}|T_C'|-|T\cap U(\mathscr{A})|\leq k|\mathscr{C}|-n-1-k|\mathscr{C}''|$$

$$= k|\mathcal{C}_P| + k|\mathcal{C}' - \mathcal{C}''| - n - 1 < k|\mathcal{C}' - \mathcal{C}''|.$$

But this implies that there is an $A \in \mathcal{C}' - \mathcal{C}''$ with $\sum_{C \in \mathcal{C}} |T'_C \cap \underline{A}| < k$, i.e. $A \in \mathcal{A}$, which contradicts $\mathcal{A} \subset \mathcal{C}''$.

Remark. The value p and hence n = kp in the proof is mainly determined by inequality (7): we have to choose p for a given k so large that $|T \cap U(\mathcal{A})| \geq k|\mathcal{C}''|$ holds. Thereby it is enough to consider an $\mathcal{A}_0 \subseteq \mathcal{A}$ such that $\mathcal{C}''(\mathcal{A}_0) := \{C \in \mathcal{C}' : \mathcal{C} \in \mathcal{C}' : \mathcal$ $\underline{C}\subseteq U(\mathcal{A}_0)\}\supseteq \mathcal{A} \text{ and } |T\cap U(\mathcal{A}_0)|\geq k|\mathcal{C}''(\mathcal{A}_0)| \text{ hold, where } U(\mathcal{A}_0):=\bigcup \ \overline{A}. \text{ Let }$ us choose A_1, \ldots, A_m from \mathcal{A} successively so that $A_i \notin \mathcal{C}''(\{A_1, \ldots, A_{i-1}\})$ and $\mathscr{C}''(\{A_1,\ldots,A_m\})\supseteq \mathscr{A} \text{ hold; set } \mathscr{A}_0:=\{A_1,\ldots,A_m\}. \text{ Suppose } y\in U(\mathscr{A}_0) \text{ occurs in } \overline{A}$ for $k+1 \ge 2$ $A \in \mathcal{A}_0$. If $C \in \mathcal{C}$ contains y, then C must be in $\{A, C_1^A, \dots, C_{t(A)}^A\}$ for these A with $y \in \overline{A}$, which implies $C \in \mathcal{A}_0$, since every $C \in \mathcal{C}$ occurs in $\{C_1^A, \dots, C_{t(A)}^A\}$ for at most $k \in \mathcal{A}$. Therefore, if there are distinct $C_1, C_2 \in \mathcal{C}$ containing y, then $C_i \in \mathcal{A}_0$ and $C_{i+1} \in \{C_1^{C_i}, \dots, C_{t(C_i)}^{C_i}\}$ for $i=1,2 \pmod 2$. But this cannot happen by the choice of \mathcal{A}_0 . Hence, we conclude $y \in \underline{A}$ for an $A \in \mathcal{A}_0$. But the vertices $x \in \underline{A}$ were not taken into account in deducing inequality (5) for this A, since every $x \in \underline{A}$ has indegree in $D(\overline{A} \cup \{x_0\})$ exceeding n by definition of $A \subseteq \mathcal{C}'$ and \overline{A} . So we see that every $x \in U(\mathcal{A}_0)$ is counted in $|(P \cup T) \cap \overline{A}| \ge p$ for at most $k \in \mathcal{A}_0$ and we can take $p = k^3$ to get $|T \cap U(\mathcal{A}_0)| \ge k |\mathcal{C}''(\mathcal{A}_0)|$. So we have shown that every $D \in \mathcal{D}_{k^4}^{k^3}$ has vertices x, y with $\kappa(x, y; D) > k$.

One can still lessen p by further considerations for all $k \ge 2$ (for instance, one can take p = 4 (13) for k = 2 (3)), but I do not believe that one can determine f(k+1) in this way. It is not possible to take in our proof p less than k^2 , as the case $\mathcal{A} = \{A_1, \ldots, A_k\}$, |A| = t(A) = 1 for $A \in \mathcal{A}$ and $C_1^A = C_1^{A'}$ for $A, A' \in \mathcal{A}$ shows.

From the above remark we get f(2)=2. (It is easily shown in a direct way that every finite digraph of minimum indegree 2 contains vertices $x \neq y$ which are joined by 3 openly disjoint paths, two x,y-paths and one y,x-path.) We will show now f(3)=3. For this, we need the following well-known property of separating sets.

Lemma. Let D be a digraph, k a non-negative integer and be $a \in D$ and $X \subseteq V(D-a)$ such that $\kappa(a, x; D) \ge k$ for all $x \in X$. If $C_1 \cap C_2 \cap X \ne \emptyset$ for certain $C_1, C_2 \subseteq V(D-a) - N^+(a)$ with $d^-(C_1) = d^-(C_2) = k$, then also $d^-(C_1 \cap C_2) = d^-(C_1 \cup C_2) = k$ holds.

For a proof of this result see, for instance, [2], [3] or lemma 1 (3) in [9].

Proposition. Every $D \in \mathcal{D}_0^0 \cap \mathcal{D}_1^1 \cap \mathcal{D}_2^2 =: \mathcal{D}$ contains x, y with $= \kappa(x, y; D) \ge 3$.

Proof. We assume that this assertion is not true. Let D be a counterexample such that |D| + ||D|| is as small as possible. Since $D \in \mathcal{D}_2^2$, $|D| \ge 3$. Then D has exactly one vertex of indegree 1, say a, and exactly one vertex of indegree 2, say b, and all the other vertices of indegree 3 by minimality of D. First, we deduce a few properties of D.

D is connected.

If not, there were a proper, non-empty subset C of V(D) with $E_D^-(C) = \emptyset$. Then $|C| \ge 3$, since $D \in \mathcal{D}_0^0 \cap \mathcal{D}_1^1$, and D(C) were a smaller counterexample.

2. $\kappa(a,x;D) \ge 2$ for all $x \in D-a$.

Suppose there is an $x \in D-a$ with $\kappa(a,x;D)=1$. If $(a,x) \in E(D)$, there is an $X \subseteq V(D-a)$ containing x with $E^-(X)=\{(a,x)\}$. But then $D(X) \in \mathcal{D}$, which contradicts the choice of D. Hence $(a,x) \notin E(D)$, and by Menger's theorem there is a vertex t separating a to x. Define $X:=\{y \in D:$ there is a y,x-path in $D-t\}$; then $x \in X \subseteq V(D-\{a,t\})$. By (1) there is an X,t-path in D, say, an x_0,t -path. Then $D':=D(X \cup \{t\}) \cup (x_0,t)$ is in \mathcal{D} and has $\overline{\kappa}(D') \leq 2$, which contradicts the choice of D.

3. $d^+(a) > 3$.

We suppose $d^+(a) \leq 2$, hence $d^+(a) = 2$ by (2). Be $N^-(a) = \{a'\}$. We have $b \notin N^+(a)$, since otherwise $D-a \in \mathcal{D}$. Furthermore, $(a',x) \in E(D)$ for $x \in N^+(a) - \{a'\}$, since otherwise $D' := (D-a) \cup (a',x) \in \mathcal{D}$ with $\overline{\kappa}(D') \leq 2$. Consider $x \in N^+(a) - \{a'\} \neq \emptyset$. Since $\kappa(a',x;D) \leq 2$, there is no a',x-path in D' := D-a-(a',x). Define $X := \{y \in D' : \text{there is a } y,x$ -path in $D'\}$. Hence $x \in X \subseteq V(D'-a')$, in particular, $E_{D-a}^-(X) = \{(a',x)\}$, hence $N^+(a) \cap X = \{x\}$ and $E_D^-(X) = \{(a',x),(a,x)\}$. Since $b \notin N^+(a)$, we have $x \neq b$ and so we get $D(X) \in \mathcal{D}$, which proves (3).

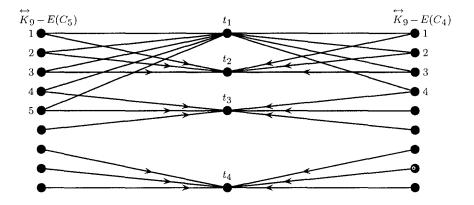
Be $N^+(a) = \{x_1, \ldots, x_n\}$, where $n \geq 3$ by (3). We subdivide (a, x_i) by a new vertex s_i for $i \in \mathbb{N}_n$ $(s_i \neq s_j)$ for $i \neq j$ and get so D_s . Set $S := \{s_i : i \in \mathbb{N}_n\}$. Consider $\mathcal{C} := \{C \subseteq V(D-a) : d_{D_s}^-(C) = 2\}$ and let C_1, \ldots, C_m be the maximal elements of (\mathcal{C}, \subseteq) . Then C_1, \ldots, C_m form a partition of V(D-a) by definition of D_s , by (2) and $\overline{\kappa}(D) \leq 2$, by Menger's theorem and the above lemma. Set $T_i := N_{D_s}^-(C_i)$ for $i \in \mathbb{N}_m$.

Obviously, $S \subseteq \bigcup_{i=1}^{m} T_i$. Since $|S| = n \ge 3$, we may assume $b \notin C_1$ and $T_1 \cap S \ne \emptyset$. Since

538 W. MADER

 $T_1 \subseteq S$ implies $D(C_1) \in \mathcal{D}$, we have $|T_1 \cap S| = 1$, say, $T_1 = \{s_1, t\}$ with $t \notin S$. By (1), there is a C_1, t -path in D, say a c, t-path. Then $D' := D(C_1 \cup t) \cup (c, t) \in \mathcal{D}$ with $\overline{\kappa}(D') \leq 2$, contradicting the choice of D.

The value f(4) is not known. The value p=13 for k=3 mentioned in the remark gives $f(4) \leq 40$. But I do not know, if not perhaps even f(4)=4. The first known k with f(k) > k is k=9. This is shown by the following construction. Take disjoint copies D_1, D_2, D_3, D_4 of the digraph on 22 vertices displayed in the figure, where $C_m := (\mathbb{N}_m, \{(i,i+1): i \in \mathbb{N}_{m-1}\} \cup \{(m,1)\})$ and an undirected line means a pair of oppositely directed edges. Let $t_j^i \in D_i$ correspond to t_j for $j \in \mathbb{N}_4$ and identify the vertices $t_1^i, t_2^{i+1}, t_3^{i+2}, t_4^{i+3}$ to a vertex t^i for $i=1,2,3,4 \pmod 4$. The resultant digraph D is outregular of degree 9 and has $\overline{\kappa}(D)=8$.



In a finite undirected graph of minimum degree n one can always find even adjacent vertices joined by n openly disjoint paths. So it is natural to ask, if every finite digraph D of sufficiently large outdegree (dependent on k only) has an edge (x,y) with $\kappa(x,y;D) \geq k$. An answer to this question is not known, but it was shown in [11] that an edge (x,y) with $\kappa(y,x;D) \geq k$ does not necessarily exist. (It is immediate to prove by induction that every $D \in \mathcal{D}^1_1$ has an edge (x,y) with $\kappa(x,y;D) \geq 2$.) One could conjecture that for every k there is an n_k such that every finite digraph D of minimum outdegree n_k contains vertices x,y with $\kappa(x,y;D) \geq k$ and $\kappa(y,x;D) \geq k$. A construction in [8] shows that this is not true even for k=2 and even if, in addition, $\min_{x \in D} d^-_D(x) \geq n_k$.

Another conjecture of mine is related to the problems considered here. It was proved in [4] that every finite undirected graph of minimum degree $n2^{\binom{n}{2}}$ contains a subdivision of the complete graph K_{n+1} . The direct analogue is not true for digraphs after the last paragraph, but perhaps the following holds.

Conjecture. For every positive integer k, there is a (least) integer g(k) such that every finite digraph of minimum outdegree g(k) contains a subdivision of the transitive tournament of order k.

Of course, g(3) = f(2) = 2. But the existence of g(4) as well as a counterexample to g(4) = 3 are not known.

Added in proof. In the meantime, I proved g(4) = 3 in "On topological tournaments of order 4 in digraphs of outdegree 3" (to appear in the *Journal of Graph Theory*).

References

- [1] A. Frank, T. Ibaraki, and H. Nagamochi: On sparse subgraphs preserving connectivity properties, *J. Graph Theory*, 17 (1993), 275–281.
- [2] Y. O. HAMIDOUNE: Sur les atomes d'un graphe orienté, C. R. Acad. Sci. Paris Sér. A, 284 (1977), 1253–1256.
- [3] Y. O. Hamidoune: Quelques problèmes de connexité dans les graphes orientés, J. Combin. Theory B, 30 (1981), 1–10.
- [4] W. MADER: Homomorphieeigenschaften und mittlere Kantendichte von Graphen, Math. Ann., 174 (1967), 265-268.
- [5] W. MADER: Existenz gewisser Konfigurationen in n-gesättigten Graphen und in Graphen genügend großer Kantendichte, Math. Ann., 194 (1971), 295–312.
- [6] W. MADER: Grad und lokaler Zusammenhang in endlichen Graphen, Math. Ann., 205 (1973), 9-11.
- [7] W. MADER: Ecken mit starken Zusammenhangseigenschaften in endlichen Graphen, Math. Ann., 216 (1975), 123–126.
- [8] W. MADER: Degree and local connectivity in digraphs, Combinatorica, 5 (1985), 161–165.
- [9] W. MADER: Ecken von kleinem Grad in kritisch n-fach zusammenhängenden Digraphen, J. Combin. Theory B, 53 (1991), 260–272.
- [10] H. SACHS: Einführung in die Theorie der endlichen Graphen, Carl Hanser Verlag, München 1971.
- [11] C. THOMASSEN: Even cycles in directed graphs, European J. of Combinatorics, 6 (1985), 85-89.

W. Mader

Institut für Mathematik Universität Hannover D 30167 Hannover, Germany